Systems | Information | Learning | Optimization
 

Universal Laws and Architectures

his talk will focus on progress towards a more “unified” theory for complex networks motivated by biology and technology, and involving several elements: hard limits on achievable robust performance ( “laws”), the organizing principles that succeed or fail in achieving them (architectures and protocols), the resulting high variability data and …

Kevin: Query Complexity of Derivative-Free Optimization || Pari: Covariance Sketching

Kevin: This work provides lower bounds on the convergence rate of Derivative Free Optimization (DFO) with noisy function evaluations, exposing a fundamental and unavoidable gap between the performance of algorithms with access to gradients and those with access to only function evaluations. However, there are situations in which DFO is …

Fast global convergence of gradient methods for high-dimensional statistical recovery

Many statistical M-estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of projected gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension d to grow with (and …

Interhemispheric effective and functional connectivity of spina bifida subjects is consistent with anatomical connectivity | Risk Analysis in Stock Trading via Feedback-Based Strategies

Sheida’s talk: In this research we analyzed effective and functional connectivity in a population of five subjects with spina bifida hydrocephalus (SBH) and five healthy control subjects using resting state magnetoencephalography (MEG) recordings. Three types of connectivity are used to describe the brain. Anatomical connectivity refers to physical connections between …

Learning with systematic corruptions: Regression-based methods with applications to MRI and graph estimation

We will discuss a line of recent work on methods for statistical inference in high dimensions. In many real-world applications, samples are not collected cleanly and may be observed subject to systematic corruptions such as missing data and additive noise. We describe how Lasso-based linear regression may be corrected to …