Systems | Information | Learning | Optimization
 

Adaptive Experimental Design for Multiple Testing and Best Identification

Adaptive experimental design (AED), or active learning, leverages already-collected data to guide future measurements, in a closed loop, to collect the most informative data for the learning problem at hand. In both theory and practice, AED can extract considerably richer insights than any measurement plan fixed in advance, using the …

Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics

Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, …

Towards a Theoretical Understanding of Inverse Problems with Neural Priors

Inverse problems of various flavors span all of science, engineering, and design. Over the last five years, approaches based on neural networks have emerged as the tool of choice for solving such problems. However, a clear theoretical understanding of how well such approaches perform — together with quantitative sample-complexity and …

Learning with Dependent Data

Several important families of computational and statistical results in machine learning and randomized algorithms rely on statistical independence of data. The scope of such results include the Johnson-Lindenstrauss Lemma (JLL), the Restricted Isometry Property (RIP), regression models, and stochastic optimization. In this talk, we will discuss a new result on …

Spectral relaxations and branching strategies for global optimization of mixed-integer quadratic programs

We consider the global optimization of nonconvex quadratic programs and mixed-integer quadratic programs. We present a family of convex quadratic relaxations which are derived by convexifying nonconvex quadratic functions through perturbations of the quadratic matrix. We investigate the theoretical properties of these quadratic relaxations and show that they are equivalent …