The statistical foundations of learning to control

Given the dramatic successes in machine learning and reinforcement learning over the past half decade, there has been a resurgence of interest in applying these techniques to continuous control problems in robotics, self-driving cars, and unmanned aerial vehicles. Though such applications appear to be straightforward generalizations of standard reinforcement learning, few fundamental baselines have been established prescribing how well one must know a system in order to control it. In this talk, I will discuss how one might merge techniques from statistical learning theory with robust control to derive such baselines for such continuous control. I will explore several examples that balance parameter identification against controller design and demonstrate finite sample tradeoffs between estimation fidelity and desired control performance. I will describe how these simple baselines give us insights into shortcomings of existing reinforcement learning methodology. I will close by listing several exciting open problems that must be solved before we can build robust, safe learning systems that interact with an uncertain physical environment.


November 15 @ 12:30
12:30 pm (1h)

Discovery Building, Orchard View Room

Ben Recht