In this talk, I will discuss a class of regularized loss minimization problems where the structure in the loss and in the regularizer can be exploited for computational purposes. I will briefly discuss current approaches to regularizer design such as the atomic norm framework before proposing a rich class of regularizers, variational Gram functions (VGF), which encompasses many existing regularization functions as well as important new ones. We derive conditions for convexity, study their conjugate functions and semidefinite-representations, and present efficient algorithms for solving structured convex optimization problems involving VGFs. We also establish a general kernel trick and a representer theorem for such regularized problems. Throughout the talk, I will point to many open questions on variational Gram representations from design, statistical and computational points of view.
Discovery Building, Orchard View Room
Amin Jalali